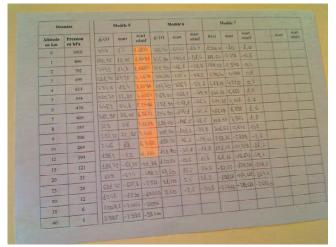
4. La pertinence est abordée : quel écart entre les valeurs observées et celles théoriques des modèles ? le professeur parle d'écart relatif sur des exemples...

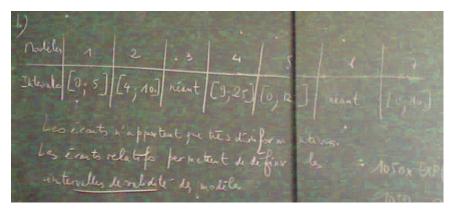

On fixe un écart de + ou - 2 et un écart relatif de + ou - 10%.

On partage la classe en binômes et chaque binôme se voit attribuer deux modèles (1 & 2, 2 & 3, etc.). On utilise les listes de la calculatrice : les valeurs des altitudes dans la liste L_1 , celles des pressions dans la liste L_2 . On affecte à la liste L_3 l'image de la liste L_1 par la fonction modèle ; on affecte à la liste L_4 la différence entre L_3 et L_2 : on affecte à la liste L_5 l'écart relatif en %, $(L_3 \square L_2)/L_2 \times 100$.

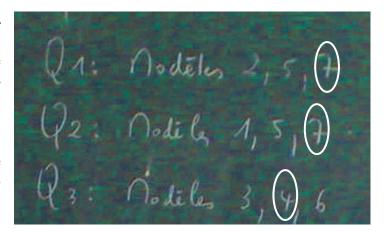
Les élèves complètent les colonnes correspondant aux modèles qu'ils étudient et doivent colorier les cases des écarts et des écarts relatifs correspondant aux critères retenus (+ ou -2 et + ou -10%).

On fait ensuite un bilan au tableau pour chaque modèle : les élèves complètent alors les autres colonnes ; on présente le fichier Excel pour chaque modèle. On peut aussi montrer celui avec la précision à + ou – 5%. On établit ensuite la liste des modèles avec leur domaine de validité.

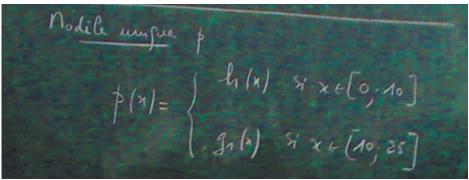
Important! Une difficulté de gestion de classe : recopier les résultats des autres modèles ne semble pas très productif et demande beaucoup de temps ; il semble donc préférable de faire travailler tous les modèles et de colorier les cases des écarts et des écarts relatifs correspondant aux critères retenus. Les élèves vont y passer autant de temps mais vont faire émerger les domaines de validité. Ce travail pourrait être à terminer à la maison.



Do	Dounées		Modèle 5			Modific 6			Models 7				
Altitude on km	Pression en hPa	g, (1)	écart	ecart relatif	g, (r)	écart	related	-h(x)	60ach	Heart. Helatif		-	
0	1010		- 12	-5,5	544					-5.2			
. 2	390			- 1/2	345								
2	792		-16	4.9.3	215	-816			4	- 9.4			
3	699			2,2	306					0,5			
4	614											100	
5	538			-						200			
6	470				250	-218							
7	409			-64	274						-		
8	355				2.44						-		
9	306				200	- 215					-		
10	264				193	- 94							
12	194		2		9.81			1 1 1 1 1					
15	121										0		
	55	333	234	439				8-12			-		
20	25		655										
25	-		1					8					
30	12			1				-					
35	0	1	-	-									


nées		Modèle :		Modèle	6	-	Mone		-			
Pression en hPa	g ₂ (x)	écart	écart relatif	g, (x)	écart	écars	H(x)	Model	e 7			
1010	953	-17		593.	-	relanf	1000	écari	related		feart	FE SE
896	8095	-15.05	-1.78		OFFE	-65,12		-10	1-162			
792	7772	-14,1	-482	533.2	-550,1	-61,13	188,44		GIZ			1
699	691,70	-	-9,52	101/2	-166,1	-56,5%	762,03		-Q41			1
614	584,6	- 100	-3126	681, 75	_	-	1		0,1%			1
538	51.575	_	1 12/2 B	and the same of	-326,4	-			0)7%			/
470	46 2	100	-5.3%	56, ×		-45,90	-		3,2%			
		-	-69%		-124.1				402		1	
409	312,35	-26,00	-9,5 t	and the same of		-3656	Company of the		11.12	1	1	-
355	329	-26	-7,1%	213 35		-33,(1	1000		0,4%			
306		-18	-6,2 %	1246	-76,5	-25%			-24%		/	
264	246	-	E-0/8 #	196,2		-1816		-	-0,72		/	
194	133,75		51,5%		-0,5		61, 33		-41,5%			
121		-	494,26	- T. Z. S.	18,5	-	-87,25		24952	1		
55	325	1175 1105		631,75	5,5	21,0%	131,61	-	-1371	1		
26	681,75	665,55	10250%		-2,5	-20,6	277.15		2515.76	1	-	-
12	1242	7279	i Danse (-	1		-

Ce travail permet d'identifier le type de précision qui permet de repérer les modèles les plus pertinents et leur intervalle de validité:



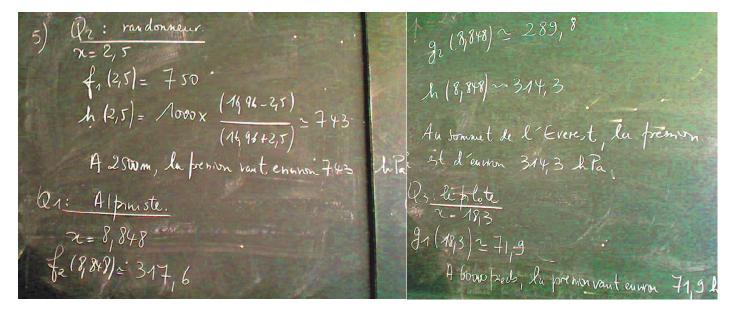
Ainsi au regard des modèles choisis par sondages, on s'aperçoit que le modèle le plus précis par rapport à la question étudiée émerge : le modèle h présente les plus faibles écarts relatifs sur [0; 10]...

Autre particularité : on voit que les modèles 3 et 6 n'ont pas de validité pour la question n° 3 alors qu'à l'œil, ils semblaient pertinents : il ne suffit donc pas que la courbe passe près des points...

On ne peut donc proposer qu'un modèle partiel unique pour la situation : la précision est autour de + ou - 5%

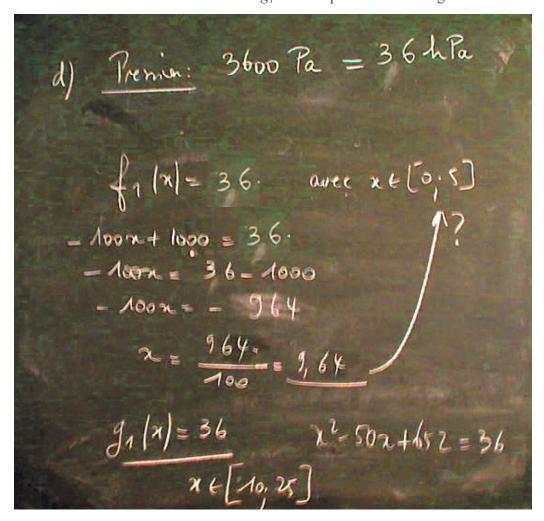
On peut donc s'interroger sur l'existence d'un modèle satisfaisant :

des fonctions du cycle terminale permettent de l'envisager...


La fonction exponentielle est une possibilité : ainsi le modèle t semble avoir un domaine de validité à + ou - 10% sur l'intégralité de la situation ;

$$t(x)$$
 1050 × $e^{[0,1475x]}$

On montre aux élèves la touche de la calculatrice utile...



5. On réinvestit les modèles pour estimer les réponses aux trois questions : les élèves effectuent avec leurs calculatrices et la précision des modèles permet d'identifier les réponses les plus précises...

Pour finir, la question d) oblige à travailler dans l'autre sens...

On montre par exemple qu'à l'aide du premier modèle, la réponse n'est pas dans le domaine de validité du modèle. La recherche s'effectue en testant le modèle g_1 dont on peut voir les images calculer...

Les élèves réinvestissent leurs connaissances sur les fonctions du second degré avec la forme canonique... On trouve deux solutions : 28 et 22 ; mais seul 22 est dans l'intervalle [10 25]. Le ballon est donc à 22 km d'altitude.