Liste de ressources du parcours 4

 

Etape 1 : Simuler une expérience aléatoire.

Cette première étape (fiche élève) permet aux élèves de simuler une expérience aléatoire, ici le lancer d’un dé tétraédrique, à l’aide de la TI83.
Cette phase d’instrumentation est à réaliser de préférence en présentiel.
La vidéo 1 (3 min 20) peut constituer une aide éventuelle.

qrcode

Etape 2 : Programmation Python et création d’échantillons.

La première partie peut être réalisée en autonomie par les élèves.
Dans une vidéo (2 min 04), un programme Python est proposé permettant d’obtenir le nombre de 1 lorsqu’on effectue n lancers du dé tétraédrique.
Dans la fiche associée, les élèves doivent recenser les résultats obtenus lors de la simulation de 10 échantillons de 100 lancers.


La deuxième partie est à réaliser en présentiel.
La fiche à compléter permet de travailler les notions d’effectifs et de fréquences cumulés.
Un point de vigilance : la difficulté de cette activité réside dans le changement de cadres. Le cadre numérique (tableau des fréquences cumulées) est associé au cadre graphique (courbe montrant l’évolution des fréquences cumulées).
La présence de l’enseignant est nécessaire pour aider les élèves à interpréter correctement le graphique (fluctuation d’échantillonnage et stabilisation des fréquences) et assurer la régulation nécessaire à cet apprentissage délicat.


Une vidéo (4 min 01) propose des éléments de correction de l’activité.

 

 

 

qrcode

qrcode

Etape 3 : Une approche fréquentiste des probabilités.

Cette activité (fiche élève) s’appuie sur deux vidéos et permet de travailler quelques éléments de programmation en langage Python.

La première vidéo (1 min 51) présente l’expérience aléatoire étudiée et présente les résultats obtenus lors de 5 tirages.

La deuxième vidéo (4 min 03) présente les résultats obtenus avec 1 000 tirages (3 échantillons), 10 000 tirages, 100 000 tirages, 1 000 000 de tirages et 10 000 000 tirages.

L’objectif est de découvrir le lien entre fréquences et probabilités.


La fin de l’activité permet de faire le lien ou d’introduire les notions d’univers et de loi de probabilités.

Fiche de synthèse de cette étape.

 

 

 

qrcode

qrcode

Etape 4 : Approche de la loi des grands nombres.

Cette activité (fiche élève) s’appuie sur trois vidéos et permet de travailler quelques éléments de programmation en langage Python.

La première vidéo (2 min 29) présente l’expérience aléatoire étudiée ainsi que les résultats obtenus lors de 5 essais.

La deuxième vidéo (4 min 32) montre les résultats obtenus avec 100, 1 000, 10 000, 100 000, 1 000 000 et 10 000 000 réalisations de l’expérience.

La troisième vidéo (3 min 49) présente l’évolution des fréquences cumulées lorsqu’on effectue un nombre de plus en plus grand de tirages.

L’objectif de cette activité est d’observer la stabilisation des fréquences cumulées et de faire le lien entre fréquences et probabilités à travers la compréhension de la loi des grands nombres.



qrcode


qrcodeqrcode

Etape 5 : Stabilisation des fréquences.

Cette activité (fiche élève) s’appuie sur quatre vidéos. Elle permet de poursuivre l’observation de la stabilisation des fréquences et de découvrir progressivement l’utilisation des arbres et des tableaux à double entrée pour le dénombrement.


La première vidéo (2 min 52) présente l’expérience aléatoire étudiée ainsi que les résultats obtenus lors de 8 tirages.


La deuxième vidéo (4 min 08) présente la construction dynamique du graphique des fréquences cumulées d’un événement au cours de 4 simulations.

La troisième vidéo (4 min 19) présente la construction dynamique des graphiques des fréquences cumulées de deux événements au cours de 3 simulations afin d’émettre une conjecture sur la réalisation de ces deux événements.

La fin de l’activité permet de découvrir les arbres et tableaux à double entrée afin de déterminer des probabilités grâce au dénombrement.

La quatrième vidéo (5 min 25) propose une synthèse complète de l’activité.

 

 

 

qrcode

qrcode

 

qrcode

qrcode